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Abstract-A finite element-based simulation of the plasma arc welding process is presented. The simulation 
determines the weld pool’s three-dimensional capillary surface shape, the approximate solid-liquid phase 
boundary, and calculates the pool’s three-dimensional flow and temperature fields. The simulation is first 
used to examine the effect of ambient temperature and plate speed on pool shape. Pool flow is then studied. 
The Row’s qualitative features are primarily determined by jet shear and the~ocapi~la~ty while buoyancy 

is of secondary importance. 

INTRODUCTION 

DURING plasma arc welding, a high energy density 
(approximately 10’ W m-*f, high velocity (lOC-SO0 
m s- ‘) plasma jet melts a small region at the junction 
of two metal workpieces. The jet’s momentum allows 
the jet to penetrate completely through the weld pool 
forming a nearly symmetric, funnel-shaped cavity 
called a keyhole. As shown in Fig. 1, the weld pool 
extends through the workpiece and holds fast to the 
solid by surface tension forces [l]. During welding, 
metal melts in the region near the plasma jet, flows 
around the keyhole, and solidifies to form a weld in 
the rear portion of the pool. 

A limited number of theoretical studies treating the 
PAW process have been reported, each of varying 
degrees of approximation, and each focusing on 
different aspects of the problem [2-51. The most 
comprehensive model of PAW to date is Hsu and 
Rubinsky’s [5] two-dimensional finite element simu- 
lation. This model calculates the two-dimensional (in 
the plane normal to the plasma jet Aow axis) weld 
pool flow and temperature fields associated with 
steady travel PAW. However, this study neglects sur- 
face tension effects and simplifies the pool geometry 
by assuming flat upper and lower free surfaces, a key- 
hole of constant radius, and a non-tapering solid- 
liquid phase boundary. 

Weld pool surface shape and thermocapillarity are 
important in determining the shape and mechanical 
properties of the final weld. A number of two-dimen- 
sional welding simulations have considered either one 
or both of these features [6-81. Of the three-dimen- 
sional welding simulations which have been reported 
[%i3], oniy three have accounted for both thermo- 
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capillarity and three-dimensional capillary surface 
shapes [II-131. 

The difficulties associated with modeling the PAW 
process appear to be considerably greater than those 
associated with most other welding processes. Most 
of these difficulties can be attributed to the plasma 
jet’s passage through the pool. In particular, four 
significant problems can be identified. 

(1) Since the pool is completely penetrated by the 
jet and is further deformed by jet shear, the pool 
surface can assume complex shapes. In addition, since 
the pool is relatively large (compared to electron beam 
and laser welding pools), the surface can sag sig- 
nificantly, complicating the problem further. Perhaps 
the greatest challenge in modeling the capillary surface 
lies in the fact that the surface shape depends on the 
pressure distributions both inside and outside the pool 
(as dictated by the Young-Laplace equation). Since 
the pressure distributions depend on the weld pool 
and plasma jet flow fields, which in turn depend on 
the surface shape, the problem is highly non-linear. 

(2) The distribution and sources of shear stress on 
the capillary interface are non-trivial. On the upper 
part of the keyhole, jet and thermocapillary shear 
stresses presumably act in combination, with the 
strength of jet shear largely determined by the local 
plasma velocity and temperature fields [15], and the 
strength of the~ocapillary shear determined by the 
local weld pool surface temperature gradient. On the 
lower, downward facing part of the pool, where the 
plasma jet no longer passes along the capillary 
surface, thermocapillary stresses are still extant. (We 
note that arc shear also occurs in GTA. However, in 
this case the stress magnitude is orders of magnitude 
smaller than in PAW and the stress direction is essen- 
tially planar, due to the nearly flat plasma-pool 
interface.) 

(3) The nature of radiant and convective heat trans- 
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NOMENCLATURE 

A’ surface area of mesh element li, 27, ri, velocities from previous iteration 
b dimensionless body force, (Gr/Re*) & (equation (24)) 

x height of lower free surface below {u}, {u}, {w}, {Q} elemental velocity and 
reference plane temperature vectors in equation (23) 

f 1 height of upper free surface, including V’ volume of mesh element 
keyhole, above reference plane -x, Y, z dimensionless coordinates 

.X7 initial guess for lower capillary surface x,, Y,, z, finite element node coordinates. 
height 

Gr 

3, 3, I; 
L 

L” 
Ma 

a, in) 
a, 
N 

NP 
N, 

P* 

PI" 

p: 
Pe,- 
Pe, 
Pr 

933 9 

Ra 

Re 

t it}’ 
T 
AT 

Tt,> T, 

u 
UP 
u, l?, w 

initial guess for upper capillary surface 
height 
vector of initially guessed surface height 
(upper or lower surface) 
vector of updated surface heights (upper 
or lower surface) 
Grashof number, g/X3( Tb - T,,,)/v* 

unit vectors in x-, Y-, z-directions 
plate thickness 
characteristic weld pool radial thickness 
Marangoni number, ]da/dT]ATL/pa 
unit normal vector 
unit normal vector to a bounding surface 
number of element nodes on linear brick 

(8) 
center node within linear brick (1) 
number of element nodes on quadratic 
surface element (8) 
pressure 
pressure on liquid metal side of free 

surface 
external pressure on free surface 
fluid Peclet number, p&LU/k, 

solid Peclet number, p,C,,,LU/k, 

Prandtl number, v/cc 
dimensionless heat flux, solid and liquid 
regions 
Rayleigh number, gp(T,- T,,,)Li/crv 

Reynolds number, ULIv 

unit tangent vector 
temperature 

T,, - T,, 

I> T,, boiling, melting ambient 
temperature 
plate speed 
characteristic pool velocity 

dimensionless liquid velocity in x-, y-q 

;-directions 

Greek symbols 

; 

thermal diffusivity 

volumetric thermal expansion coefficient 

Y surface tension coefficient 

YP penalty constant 

ar, line of intersection between keyhole 
interface and the plane of the plate’s 
lower surface 

artI line of intersection between the fusion 
boundary and the plane of the plate’s 
lower surface 

ar, line of intersection between the fusion 

boundary and the plane of the plate’s 
upper surface 

6% lower capillary interface 

6% keyhole capillary interface 

JQS upper and lower surfaces of the solid 
plate 

6% solid-liquid phase boundary 

hfi, upper capillary interface, including 
keyhole 

6R,, upper, non-keyhole capillary interface 
E relaxation parameter in equation (48) 

P density 
0 surface tension coefficient 

bl stress tensor 

r,,t keyhole shear stress due to plasma jet 
4,) Y,, 4”) finite element interpolation 

functions. 

Subscripts 
ct index for free surfaces, 1 = upper 

surface, 2 = lower surface 

CC B> Y direction indices in equations (24)-(29) 
i, j, k node indices 
x, xx, y, yy, z, zz first and second derivatives 

with respect to x, y and z. 

fer from the jet to the pool surface is unknown. Prior 
studies [3,4] assumed that heat transfer could be 
adequately modeled using experimental measure- 
ments [15] of entrance flow of a plasma into a non- 
melting pipe. However, since the pool interface is in 
motion, and since metal evaporation at the capillary 
interface may be significant, this approach can only 
be considered a first order approximation. 

(4) The electromagnetic field in the vicinity of the 

weld pool is unknown. While it is expected that 
Lorentz forces are significant within the weld pool, 
imposing proper boundary conditions in order to 
simulate this effect remains problematic. 

Beyond this list of difficulties, another problem 

arises due to the unknown location of the solid phase 
boundary. Solving this portion of the problem alone 
represents a significant challenge, since the phase 
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boundary is determined in part by the three-dimen- 

sional flow field within the weld pool. 
In this paper, we develop a finite element simula- 

tion which calculates approximate three-dimensional 
capillary interface and solid-liquid phase boundary 
shapes, and which determines the corresponding 
three-dimensional weld pool flow and temperature 
fields. The simulation is also used to calculate the 
associated solid phase temperature field. Due to 
the difficulties outlined above, several simplifying 
assumptions are implemented, in large part to make 
the simulation computationally tractable. These are 
described. 

The study’s primary purpose is to investigate the 
effects of plasma jet shear, thermocapillarity, and 
buoyancy on weld pool flow. These effects are ex- 
amined under moderate Reynolds number and low 
Peclet number conditions. The second purpose of this 
work is to examine weld pool shapes under a few 
practical conditions. Here, pool shapes are deter- 
mined as functions of plate travel speed and ambient 
temperature. 

PROBLEM FORMULATION 

Assumptions 

The following simplifications are introduced, either 
to make the simulation computationally practicable 
or due to insufficient information concerning a par- 
ticular aspect of the problem. Note that throughout 
the remainder of the paper we will refer to the interface 
between the plasma jet and the weld pool as the key- 
hole (refer to Figs. 1 and 2). As discussed below, the 
capillary surface will be divided into three distinct 
regions: an upper non-keyhole region, the keyhole, 
and a lower non-keyhole region. 

(3) In calculating the capillary surface shapes, press- 

ure within the pool is assumed to be hydrostatic, and 
external pressure is assumed to take on one of two 
constant values. On the non-keyhole portions of the 
capillary surface, the external pressure is atmospheric, 
while within the keyhole, pressure assumes a slightly 
higher value (2000 Pa in excess of atmospheric), 
characteristic of the plasma pressures calculated in an 
earlier study [4]. The assumption of a constant in- 
keyhole plasma pressure is consistent with earlier cal- 
culations which indicated negligible plasma pressure 
variations within the keyhole [4]. A rigorous solution 
for the surface shape requires accurate knowledge of 
the dynamic pressure fields both interior and exterior 
to the pool. This in turn requires an expensive iterative 

procedure in which the non-linear three-dimensional 

flow and temperature fields within both the pool and 
plasma jet are solved several times in arriving at the 
final capillary surface solution. Future work which 
incorporates a solution for the plasma jet will focus on 
developing an efficient means of solving the complete 
coupled problem. 

(1) We assume that the plasma jet is columnar, (4) A conduction solution, based on a guessed capil- 
having a circular cross-section at the point where it lary surface shape, is used to locate the solid-liquid 

impinges on the weld pool. The assumed radius is 

characteristic of the jet’s radius at its exit from the 
weld torch. In actuality, the jet spreads radially some- 
what as it travels from the torch to the pool. The 

present assumption captures the essential physics 
since jet momentum remains concentrated near the 
flow axis. 

(2) The capillary surface shapes are determined by 

performing one Newton-Raphson iteration on the 
initial surface guess. Subsequent iterations were 
deemed unnecessary since no surface position, in any 
of the cases considered, changed by more than 1% 
from the first iterate to the converged solution (see 
below). This feature reflects the fact that the initial 
guesses were based on experimentally observed 

shapes. 

FIG. 1. Schematic of the plasma arc welding process 
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FIG. 2. Detail of the weld pool geometry 

phase boundary. We thus neglect both weld pool con- 
vection and the difference between the guessed capil- 

lary surface shape and the final shape. Since the 
maximum Peclet number considered in this study is 
0.23, then convection will be of secondary importance 
in most cases. This is confirmed by the results below. 
Similarly, since the average difference between any 
guessed capillary surface position (i.e. the height 
above a reference plane) and the final solution aver- 
ages 6%, then the error introduced in using the initial 
guess will not be significant. 

(5) Electromagnetic forces are neglected, in part 
due to the lack of information concerning the in- 
keyhole electric field. 

(6) Plasma heat transfer is assumed to occur only 

on the keyhole portion of pool surface. Radiative and 
convective heat transfer on the remainder of the pool 
surpdce and on the upper and lower surfaces of the 
solid plate is neglected. Similarly, evaporation from 
the pool is ncglccted. Although neglecting radiation 
and evaporation may introduce quantitative errors 
into the weld pool flow and temperature calculations. 
the qualitative flow features arising from jet shear, 
thcrmocapillarity, and buoyancy should not be 
affected. Future work which solves for the plasma jet 
velocity. temperature and electric fields will incor- 
porate evaporation and radiation effects. 

(7) The keyhole interface is assumed to be at the 
metal’s boiling temperature. This assumption is con- 
sistent with boiling we have observed on the upper 
portion of the keyhole, and is also consistent with the 
IO4 K characteristic plasma temperature that exists 
within the keyhole. It is not known however, whether 
boiling actually occurs throughout the keyhole. 

(8) Plasma jet shear within the keyhole is assumed 
constant and on the order of the shear measured for 

entrance flow of a plasma into a circular pipe [l5]. 
This assumption is employed since an earlier study [4] 
indicated that in-keyhole jet shear is independent of 
plasma mass flow rate. 

(9) Consistent with the low heats of fusion which 
characterize most metals, latent heat effects are 

neglected [5,16-l 81. 
(10) All thermophysical properties, save surface 

tension and thermal conductivity, in both the solid 
and liquid phases are assumed constant, and are rep- 
resentative of AISI 304 stainless steel. Surface tension 
is assumed to vary linearly with temperature 
[9, 1 I, 121. While different conductivities are used in 
the solid and liquid regions [9, I I, 121, each of the 
other properties are assumed to be equal in each phase 
[9, I I, 121 (see Table I). 

(I 1) The weld pool flow is assumed Newtonian, 
incompressible, quasi-steady, and laminar. 

Model 
We assume that the problem is symmetric about the 

plane J = 0 and thus perform our calculations in the 
region where !: > 0. We fix a coordinate system to the 
moving jet, with the origin placed at the bottom of 
the keyhole (refer to Figs. I and 2). 

Given the assumptions listed above, the non-dimen- 
sionalized Navier-Stokes equations are given by 

uu, + wy + MU, = - p,* + L (u,, + uyy + u,,) + b, 
pi? Re 

(1) 
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Table 1. Thermal physical properties, dimensionless numbers 
and parameters 

p = 10-4c- 

C,=7OOJkg-‘“C-l 
yp = 10’ 
Idu/dTI = 0.0003 kg s-* “C-’ 
k, = 25 W m- ’ 'C- ’ 
k,=30Wm-‘“C-’ 
L = 0.01 m 
L, = 0.003 m 
p = 10m2 kg mm’s_’ 
pr, ps = 7200 kg mm’ 
o= 15Nm-’ 
r, = 1400°C 
r, = 2800 c 
rler= 140Nm-r 
Re= 10 
Pe = 0.23 
10’ < Ru < lo5 

~v,+vvy+wv, = -4Y*+~(vxi+vyy+vzd)+by 
pU2 Re 

(2) 

u”‘x +u”‘). + ““+I, = - pz + L (w,, + wyy + w,,) +b, pU2 Re 

(3) 

ll, + uy + w, = 0 (4) 

where Re is the Reynolds number, b is the non-dimen- 
sional body force, and P* is the dimensional pressure. 
Velocities are scaled to the plate travel speed, U, while 
lengths are scaled to the plate thickness, L. 

It is important to note that a very thin thermo- 
capillary-induced boundary layer is likely to exist along 

the non-keyhole portions of the capillary surface. 
Referring to Ostrach [19], the relevant boundary 
layer velocity scale and thickness are 

and 

;)+& 
0 s 

Using the values in Table 1, we find that U, = 0 (1 m 
SK’) and 6 = 0 (lo-’ m) (so that S/L, = 0 (IOm2)). 
The corresponding Reynolds number based on U, and 
L is on the order of 104, indicating that the layers may 
be turbulent. No attempt was made to resolve these 
boundary layers; rather, due to the approximate 
nature of the stress and thermal boundary conditions, 
the calculations were confined to the non-boundary 

layer core region within the pool (comprising on the 
order of 99% of the pool’s volume). As argued below 
(see Results), due to the requirement that surface ten- 
sion maintains the pool against jet shear, jet impinge- 
ment, pool weight and flow-induced dynamic 
pressure, the velocity scale within the core is only on 
the order of 1 mm s- ‘-1 cm s- ’ (consistent with the 
velocity scale used above). Clearly, future work which 

incorporates accurate boundary conditions will 
require accounting of the thermocapillary and jet 

shear boundary layers. 
The Boussinesq approximation is employed so that 

for the coordinate system shown in Fig. 2, b is given 

by 

b=sOk 

where Q is the non-dimensional liquid temperature 

(T-T,) 
‘= (T,-T,,,) 

and Gr = g/l(Tb - Tm)L3/v2 is the Grashof number. 

The non-dimensional energy equation is given as 

UB, + 28, + wo, = ; (Q,, + o,, + O,,) (6) 
f 

where Per = Re Pr is the fluid Peclet number. Heat 
conduction in the solid region is governed by 

0; = ; (OC, + e;, + O;Z) (7) 
F 

where 8” is the non-dimensional solid temperature 

CT- ToI 
‘” = (T,,,-To) 

and Pe, = UL/a, is the solid Peclet number. Note, 
the non-dimensional velocity multiplying 0: is 1. The 

Young-Laplace equation, which describes the surface 
curvature of an interface between two immiscible 
fluids, can be written in non-dimensional form as 

VH*d+K= 0. (8) 

Here, fi is the local unit normal to the interface, K is 
the non-dimensional pressure difference across the 
interface, and 

is the divergence operator in the horizontal plane 
(refer to Fig. 2). K is given as 

K = L(EW:) 
0 (10) 

where P,*-P* is the local pressure difference across 
the interface and 0 is the surface tension coefficient. 
For the problem considered here, the weld pool’s 
capillary interface is divided into two adjoining 
surfaces. The first surface, which will be referred to as 
the upper surface, 6Q,, is assumed to extend from a 
half-circle lying at the bottom of the keyhole (in the 
plane z = 0) to the solid-liquid phase boundary on 
the workpiece’s upper surface (z = 1). The second, or 
lower surface, 6R,, extends from the same half-circle 
to the workpiece’s bottom solid-liquid phase bound- 
ary (on z = 0). See Fig. 2. The assumption of a half- 
circle (i.e. circular keyhole) at the intersection of the 
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two surfaces was guided by experimentally determined 
keyhole shapes [3, 141. 

Assuming that each surface has no folds, then each 
can be described as a function of Cartesian coordinates 
.Y and I‘ 

.f; = X(X I‘) (1 la) 

.fh = fh(.X, .v) (1 lb) 

wheref; is the height of the upper surface (SQ,) above 
the reference plane (-_ = 0) and ,fh is the distance from 

the reference plane to the lower capillary interface 
(SQ,). The domain of ,f; lies in the plane z = 0 and is 
bounded by the half-circle at the keyhole, the .x-axis, 
and by the vertical projection of X, onto the plane 
z = 0 (where ST, is the line of intersection between 
the fusion boundary and the upper capillary surface). 
Refer to Fig. 2. The domain of,& is similarly defined, 

except that the intersection line between the fusion 
boundary and the lower capillary surface (K,) 

replaces the boundary projected from X,. 
The unit normal in (8) can now be expressed as 

(12) 

so that inserting (12) into (8) leads to 

-.L(l +./&.)-./%,,(l +r~~)+zr,.,.!,.,f;.~~ +K= o 

(1 +fL+.I;>)’ 2 

x = 1.2. (13) 

Here, subscript 3 denotes either the upper or lower 
surface. 

Boundary conditions 
The no-slip condition applies on the solid-liquid 

boundary so that the fluid velocity on this surface is 
just the plate velocity 

u.n = 1 on fin,,. (14) 

The temperature on this surface is the melting tem- 
perature 

fl = 0 on &I,, (15) 

Within the keyhole, the shear between the plasma jet 
and the weld pool is given by 

lt)Tbl{n) = 5.t on 60, (16a) 

while on the non-keyhole portions of the free surface 
the tangential stress is due to thermally induced sur- 
face tension gradients 

(t}‘[~]{n} = $VT*i on 6R,,, X&,. (16b) 

In equation (16) [u] is the viscous stress tensor 
((T,, = p(u,,,+t,,,)), i and {t} are the unit tangent vector, 
and {II} is the unit normal. As mentioned above, the 
temperature on the keyhole interface is assumed to be 
the metal’s boiling point 

[K”] [K”] [K”] [K’J] {ui (F’) 

[KZ’] [P] [P] [P] {I%)- (F’j 
[K”] [K’Z] [K=] [K’d] (w; = {F’) 

[PI [P] [P] [P] :III I {O) 1 ‘F4j 

(23) 

0= 1 on6Q. (17) The sub-matrices [K] are given by 

On the symmetry plane, 1’ = 0, the velocity in the _r- 
direction vanishes, as do all derivatives with respect 

to .l’ 

r=o; 
2U it1 (‘II‘ 
;y=o: ,,=o: (7v =o at_r=o. 

(18) 

The kinematic condition that no liquid metal crosses 

the capillary surface is enforced by 

u.ii=O onSR,,KJ,. (1’)) 

The upper and lower solid surfaces are assumed 
adiabatic 

as are the non-keyhole portions of the capillary 
surface 

PO 
= 0 on 60,,?K&. 

?n 
(20b) 

One further condition completes the solid conduction 
problem: at points far removed from the weld the 
solid temperature approaches the temperature of the 
surroundings 

0+0 asr+ x. (21) 

We note that the temperature on the solid-liquid inter- 
face is the melt temperature 

0’ = I on 652,, (22) 

Boundary conditions on the capillary surface are dis- 
cussed in the next section. 

Finite elements,formulation 
The continuum formulation described in equations 

(1))(21) is recast into a form suitable for numerical 
solution using the Galerkin finite element method. 
The penalty method is employed here, largely due to 
its increased computational efficiency over the press- 
ure-velocity formulation [20]. As discussed elsewhere 
[21], the penalty method replaces P with -;‘rV ‘u so 
that pressure is removed from the momentum equa- 
tions. In addition, since the continuity equation (4) is 
essentially satisfied by choosing y,, large enough (4) 
does not have to be considered in the finite element 
formulation. Applying Galerkin’s method to the 

stress-divergence form of the Navier-Stokes equa- 
tions then yields a set of weighted residual equations 

PII 
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+;+,(4,.x,4,.x,) dV 1 
(x=b;z,&y= 1,2,3,i,j= I,2 ,..., N) (24) 

K”” = 
I, 

SL 
y’ ~(9,,,,Qi,,,)+~~(~i,~~~,,~,~) 1 dV 

(~(#/J;x,fl,y= 1,2,3,i,j= 1,2 ,..., N) (25) 

F;= 
s 

$ittidA (z=1,2,3;i=1,2 ,..., N) 
A= 

(26) 

where d, t:, and $ are the velocities calculated in the 
previous iteration. Equation (26) applies to elements 
having a face on a capillary surface. For elements 
having a face lying on a non-keyhole capillary surface 

Ma 
7 =----i_V$*it, n Re- Pr (27) 

while elements with faces on the kevhofe interface have 

qet 
rz = -_i t, 

PU 
(28) 

Mu = Ida/dT(ATl/pcz is the Marangoni number and 
t, is the c1 component of i. Interior elements having 
no external faces have force vectors given by 

C =Er 
s 

VC(4i$,Fj)dl’ (29) 

where F, is the nodal temperature from the previous 
iteration. and Ra = gfl(T,,- T,,,)L’/av is the Rayleigh 
number. [J?] is the only non-zero sub-matrix in the 
fourth row and column of the elemental stiffness 
matrix (23) and is given by 

+ ~(~,.,~,,.+a;.,~,.,+~..,~,,) 
r I 

dV (30) 

where i and j run from 1 to N. The load term {P} is 
given as 

where q = VB is the dimensionless heat flux. The set 
of equations (23)-(31) are coupled and non-linear, 
and so must be solved iteratively. As described in the 
following section, a successive substitution technique 
is employed. 

The finite element formulation of the solid con- 
duction equation (7) is given by 

where 

(32) 

+~(gi..~,,,+~i.,~,.,+~i.,~,.,) dV (33) L 1 
and 

1 
F; = 

s pC,UAT” /,’ 
(6% * 3 dA (34) 

and where AT’ = T,,, - To, qs = V$,, and i and j again 
run from 1 to N. 

Application of the Galerkin procedure to the 
Young-Laplace equation (8) yields [22] 

s nc (4eWH *e+K))dA=O. (35) 

Employing the two-dimensional version of the diver- 
gence theorem and using equation (13) leads to [22] 

[KSurf] {J’} = (Fsurr} (36) 

where 

K;” = 

and 

Ftsurf = - (38) 

f = f(x, y) is the first guess for f (where the subscript 
denoting upper and lower surfaces has been sup- 
pressed for clarity) and 4,s’ is an interpolation function 
for a quadratic line element. Equation (38) is a line 
integral evaluated on X, and dT, in the solution for 
f, (upper surface) and on Xb and ark in the solution 
for fb (lower surface). 8, is a unit normal vector to the 
solid-liquid phase boundary, evaluated on the curve 
Z, in the solution for ,f, and on Xr, in the solution 
for fh. Along ark, 8, is directed in the positive z- 
direction in the solution for f; and in the negative z- 

direction in the solution forfb. Ci is the unit normal to 
f, (r = 1) Offb (tl = 2). 

The boundary conditions used to solve (36) for the 
upper capillary surface are 

.f,(z = 0) = 0 on ark (39) 

and 

f;(z = 1) = 1 on a-,. (40) 

Similarly, boundary conditions used in the lower sur- 
face solution are 

&(z = 0) = 0 on a-, (41) 

and 



3290 R. G. KEANINI and B. RUBINSKY 

jh(z = 0) = 0 on X,. (42) 

Cwrlpllter co& 
The program first calculates the solid temperature 

field using an assumed capillary surface shape. The 
solid temperature solution is obtained in the standard 
fashion. Each elemental stiffness matrix and load 
vector is calculated according to equation (7) and 
then assembled into a global stiffness matrix and load 
vector. Two-point Gaussian quadrature is used to 
calculate all stiffness and load terms. Boundary con- 
ditions are imposed at the appropriate nodes and the 

corresponding rows and columns are condensed out 
of the global stiffness matrix. The condensed system 
of equations is then solved using LU decomposition. 

The solid temperature solution is fed to a mesh 

generator which constructs an initial mesh within the 
fluid region. The initial mesh boundaries are then cal- 
culated using the melt isotherm and the guessed capil- 
lary interface. The upper and lower capillary surfaces 
are then calculated using one Newton-Raphson iter- 
ation, as prescribed by [22] 

{f’} = {fO} - {df’} (43) 

Top view 

c----l lcm 

Vertical cross sections Weld pool shapes 

6 

(b) 

FIG. 3. Weld pool shape vs plate speed: (a) in the plane of the plate’s top surface; (b) vertical cross- 
sections, T,, = 30°C. Vertical cross-sections begin at the front of the pool (I), (i.e. the narrowest portion 
viewed from the top) and end at the back of the pool (8). Each vertical cross-section is spaced equiangularly 

about the z-axis (refer to Figs. 1 and 2). The same numbering scheme is used in Figs. 46 and 8. 
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Top view 

)------I lcm 

Weld pool shapes 

Vertical cross sections 

H Imm 

FIG. 4. Weld pool shape vs ambient temperature : (a) in the plane of the plate’s top surface ; (b) vertical 
cross-sections. Ii = 1.5 mm s- ’ 

where {f’} is the vector of updated surface heights 
(upper or lower), {f*} is the vector of initial heights, 
and {df’} is the change in {f”}. {df’} is determined 
by solving 

[Jo] (df’} = {R’} 

where the components of (R’} are given by 

(44) 

and where 

Equation (44) is solved by the same set of operations 
used to solve for the solid temperature field and the 
solution is added to the initial guess for ,f to give the 
final computed shapes. 

Note, as explained above, one Newton iteration 
was sufficient for calculating the capillary surface 
shape. This simplified approach was verified in two 
ways for all of the shape solutions reported in this 
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Isotherm spacing = 87.5”C H I mm 

2 A 4 

.‘I 6 

FK. 5. Weld pool temperature distribution. U = 1.5 mm s ‘. T,, = 30 C. 

paper. First, Newton iterations were performed until 
the following convergence criterion was satisfied : 

.v, 
,F, w + ’ -.f;“Y,f;“l z < c, (47) 

where .f;‘: is the ith surface height, k is the iteration 
number, N, is the number of surface nodes, and 
c, = IO “. The calculations were repeated using a 
simple successive substitution method. In each case. 
the converged solutions were the same. More import- 
antly, the maximum change in any nodal fvalue from 
k = 1 to convergence was always less than I%, and 
generally on the order of 0.1%. Typically, con- 
vergence occurred following the second Newton iter- 
ation and following the third successive substitution. 
Five-point Gaussian quadrature was employed for 
these calculations. 

Once the upper and lower capillary surfaces are 
calculated, the mesh in the fluid region is adjusted, 
and calculation of the weld pool velocity and tem- 
perature fields commences. The procedure follows 
that described by Reddy [21] and entails solving the 
momentum and energy equations for a set of increas- 
ing Reynolds and Peclet numbers. Beginning with 
relatively low values for Re and Pe, all non-specified 

velocity components and temperatures are initially set 
to zero. For given values of Re and Pe, an iterative 
procedure is employed in which solutions from the 
first and subsequent iterations are introduced into 
the nonlinear terms of the momentum and energy 
equations. Iterations continue until the maximum 
relative change in any variable at any node is less 
than a specified tolerance, 0.01 for the calculations 
described here. Once a converged solution is obtained, 
Re and Pe are increased and the preceding converged 
solution is used as a first guess for the next set of 
calculations. Two-point Gaussian quadrature is used 
for all load terms and all stiffness terms not associated 
with the penalty parameter. Stiffness terms multiplied 

by yp are integrated using one point quadrature [21]. 
Convergence is accelerated using an under-relaxation 
method given by [2 I, 231 

where the superscripts denote iteration number and 
where E was chosen as 213 [21]. 
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FIG. 6. Weld pool velocity fields in vertical cross-sections. r..+L../~lda/dTI~T~- T-j) = 10. Re = 10. ,-< “, ,, 

-1 Pe = 0.23. CI = 1.5 mm s ‘, T, = 3o”C, do/dT < 0.‘~ ” “’ 

A modified, out-of-core, frontal solver based on 
Hood’s [24] program is used to solve the system of 
equations. The computations are performed on a 
CRAY X-MP and special buffering and asynchronous 
I/O features are implemented in order to optimize the 
larger amount of necessary I/O. For the calculations 
reported here, a mesh of 1088 brick elements, con- 
taining 1305 nodes is used in the fluid region. The 
upper capillary surface is divided into 64 quadratic 
surface elements (225 nodes), while the lower surface 
is divided into 32 quadratic surface elements (121 
nodes). The mesh within the solid region is comprised 
of 240 brick elements containing 396 nodes. The 
characteristic Reynolds number is chosen based on a 
scaling argument presented below. 

RESULTS 

Weld pool shape 

The effect of plate travel speed on weld pool shape 
is shown in Fig. 3. (In the following, we will refer to 
the extended region of the weld pool on the welded 
side of the plate as the back of the pool, and to the 
opposite side as the front.) As shown in Fig. 3(a), the 
weld pool is somewhat elliptical, and extends farther 
from the weld torch as the plate speed increases. In 
contrast, both the pool width and the distance 
between the keyhole and the pool front decrease with 

increasing plate speed. These results agree qualitat- 
ively with Hsu and Rubinsky’s two-dimensional simu- 
lations [5]. Qualitatively, the results in Fig. 3(a) reflect 
the increasing importance of bulk heat transport in the 
travel direction relative to conduction in the x- and y- 
directions. Figure 3(b) shows the weld pool in cross 
section. The simulation indicates that pool sag, particu- 
larly in the lower-front and upper-back portions 
of the pool, increases significantly with plate speed. 

The effect of ambient temperature on pool shape 
is shown in Fig. 4. This information is relevant to 
applications in low temperature environments either 
on Earth or in space. The results show that weld pool 
width and length decrease with decreasing ambient 
temperature. This behavior is physically reasonable 
since smaller boundary temperatures produce higher 
radial temperature gradients, implying that the charac- 
teristic distance between the keyhole and the fusion 
boundary will decrease. Differences in pool sag at 
the lower-front of the pool are not nearly as pro- 
nounced as in the case of varying plate velocity due to 
the relatively minor differences in pool radial width. 

Pool temperature distribution 
The temperature field within the weld pool is shown 

in Fig. 5. This result is representative of all the cal- 
culations that were performed. The simulated con- 
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FIG. 7. Weld pool velocity &Ids in horizontal cross-sections. s,,,L,/(ldo/dTI(T,- T,)) = 10, Rr = IO, 
Pe = 0.23, U = 1.5 mm sm ‘, T, = 30,-C, da/dT < 0. 

ditions in this case are a 1.5 mm s ’ plate speed, 
and Peclet and Reynolds numbers of 0.23 and 10, 
respectively. The temperature solution shown cor- 
responds to the conduction limit. The isotherms are 
essentially normal to the adiabatic, non-keyhole por- 
tions of the capillary surface and, in the vicinity of 
the keyhole, are parallel to the constant temperature 
keyhole interface. Similarly, neighboring isotherms 
are parallel to the fusion boundary. 

Pool Reynolds number 

It is important to note that the characteristic 
Reynolds number within the core region of PAW 

pools may not be as high as the 103~104 Reynolds 
numbers which often characterize other welding pro- 
cesses. This is due to two distinct features. First, a 
large free capillary surface forms the PAW pool’s 
lower boundary, supporting the pool against dynamic 
and hydrostatic forces and effectively limiting the 
characteristic pool velocity scale. (Although a free 
capillary surface also comprises the lower boundary 
of laser and electron beam weld pools, the surface 
area in these instances is approximately an order of 
magnitude smaller than that in PAW [25].) Second, 
the PAW pool is subject to the force of an impinging 
plasma jet, a shear stress due to jet flow through the 
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FIG. 8. Weldpool velocityfieldsinverticalcross-sections. r,,,L,/(ldo/dTI(T,,- T,,,)) = 1, Re = 10, Pe = 0.23. 
Ci=1.5mms~‘,T,=30”C,do/dTiO. 

keyhole, and in many instances, the force due to an 
impinging shield gas. 

An estimate of the characteristic PAW pool velocity 
and Reynolds number within the core region can be 
obtained by balancing all of the forces acting on the 
fluid region bounded by the plane z = 0 (see Fig. 2) 
and the lower capillary surface. Taking into account 
the hydrostatic head, the approximate force due to jet 
shear (conservatively estimated using the correlation in 
ref. [ 151) the approximate force due to jet impingement, 
plJfn(r:--r,f) (where p and U, are characteristic jet 
densities and velocities and r, and rb are characteristic 
radii at the top and bottom of the keyhole), and 
assuming that the liquid metal at the bottom of the 
pool flows normally into and then back out of the 
control surface at z = 0 (as indicated by the simulated 
results), we find (by balancing against the upward 
acting surface tension force) that the characteris- 
tic velocity within the pool, U,, could range from 
approximately 1 mm s- ’ to 1 cm s- ‘, depending on 
the assumed characteristic contact angle. (Note that 
due to the thinness of the thermocapillary-induced 
boundary layer, the corresponding dynamic pressure 
contribution is negligible.) Thus, for stainless steel, 
the corresponding characteristic core Reynolds num- 
ber lies in the range 7 < U,L,/v < 70. Experimental 
data are needed to clarify this issue. In all simula- 
tions presented in this paper, Re is set equal to 10 

and the Peclet number is set to 0.23. The magnitudes 
of the other relevant flow parameters are given in 
the captions. 

PoolJluidJlow 
Figure 6 shows the flow field when the jet shear is 

10 times larger than the characteristic surface tension 
stress, ]do/dT](T,- TJL (z,,, = 1400 N m-‘), and 
assumes that da/dT is negative. This simulation cor- 
responds to flow induced by relatively large plasma 
mass flow through the keyhole, and assumes that sur- 
factants are absent on the upper and lower free capil- 
lary surfaces. These conditions could also arise when 
jet shear is of normal magnitude but surface tension 
driven flow is inhibited due to the presence of an oxide 
layer, for example. Flow in vertical cross-sections is 
dominated by a jet driven circulatory region. The 
maximum velocity on any given vertical cross-section 
is approximately 10 cm SK’ and is located near the 

keyhole surface at the bottom of the keyhole. The 
velocities in the front of the pool are on the order of 
l-10 cm s- ’ and are directed predominantly down- 
ward. In the back part of the pool, in the region 
outside the circulating cells, velocities are on the order 
of the plate travel speed (0 (1 mm s- I)). As described 
below, relatively fast downward flow in the front of 
the pool will induce a horizontal counterflow (i.e. 
directed against the plate travel direction) as required 
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Fz. 9. Weld pool velocity fields in horizontal cross-sections. z,,,L,,/(ldojdTI(T,- T,,)) = 1, Re = 10. 
Pe = 0.23, U = 1.5 mm s- ‘, T, = 30°C. dc/dT < 0. 

by continuity. A stagnation region is apparent near 
the top of the keyhole, produced by competition 
between jet shear and the radially outward acting 
thermocapillary stress. The velocities take on the 
boundary velocity along the fusion boundary. as is 
apparent in the various cross-sections. 

The flow within various horizontal ‘slices’ through 
the pool are shown in Fig. 7. Since few element nodes 
lie on any given horizontal plane within the pool, 
horizontal velocity components at nodes lying on or 
within 0.5 mm of a given horizontal plane are shown 
(i.e. the slices are 1 mm thick). As shown, in the lower 
part of the pool the flow near the keyhole is generally 

directed radially outward. At all levels within the pool. 

the fluid tends to approach the fusion boundary and 
then turn toward the back of the pool, flowing some- 
what parallel to the direction of plate movement. A 
weak (clockwise) circulating region appears to exist 
in the middle to upper reaches of the pool, as indicated 
in the top two horizontal cross-sections. As this flow 
approaches the keyhole, it tends to pass around the 
keyhole, against the direction of travel. Referring to 
Fig. 6, we see that the counterflow is induced by rela- 
tively high downward velocities in the front of the 
pool. The magnitudes of the horizontal velocity com- 
ponents near the fusion boundary and in the counter- 
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flow region are of the same order as the plate speed. 
Velocity magnitudes in the central regions are on the 
order of 1 cm s- ‘. 

Results somewhat similar to those found in the 
high jet shear case follow when the characteristic 
thermocapillary stress and jet shear are equal (zj,, = 
Ido/dTI(T,-T,)/L = 140 N m--*). See Figs. 8 and 9. 
As before, the maximum velocity in any given vertical 
cross-section occurs in the bottom portion of the pool. 
However, the maximum magnitude is only on the 
order of 1 cm s- ‘, and in contrast to the first case, no 
predominantly downward flowing region exists (as in 
the cross-section in the upper left of Fig. 6). The 
velocities along the free capillary interfaces (Fig. 8) are 
more comparable to the velocities along the keyhole in 
this case, and the smaller velocities in general are 
evident when compared against the velocities along 
the fusion boundary. The velocities shown are absol- 
ute ; thus velocity vectors point out of the free 
surfaces, and away from the keyhole, at angles that 
depend on the angle between the cross-section and the 
positive x-direction. Referring to Fig. 9, we see that 
the flow in horizontal sections is dominated by the 
plate’s movement. The counter~ow is minor and is 
confined to the immediate vicinity of the keyhole. 

The effect of buoyancy on the PAW weld pool flow 
was investigated by holding the jet shear and surface 
tension at their characteristic values, and varying the 
Rayleigh number from 10’ to 1Oh (the characteristic 
Rayleigh number for stainless steel in this problem is 
O(l0“)). It was found that the flow and temperature 
fields were essentially unaffected by buoyancy; this 
result is physically reasonable given the fact that the 
characteristic dynamic Bond number, Bo, = b&L:/ 

ldy/dTl, is at most on the order of 0.1 (based on the 
values provided in Table 1). 

CONCLUSIONS 

Three-dimensional plasma arc weld pool shapes, 
temperature distributions and flow fields have been 
simulated under various conditions. Pool width 
decreases, while pool elongation increases with 
increasing plate travel speed. In contrast, pool width 
and Iength decreases with decreasing ambient tem- 
perature. A scaling argument suggests that in contrast 
to other welding processes, the characteristic PAW 
pool Reynolds number within the non-boundary layer 
core region is relatively small, due to the necessary 
balance between dynamic forces and surface tension. 
For the low Peclet number conditions considered here, 
weld pool heat transfer within the core is essentially 
due to conduction. 

The pool flow is dominated by surface tension and 
jet shear forces. When the ratio of characteristic sur- 
face tension to jet shear is small, the flow in vertical 
cross-sections is dominated by a large circulation 
region in the center of the pool. Although a similar 
circulatory region exists when jet shear and surface 
tension are comparable, the velocities in this case are 

approximately an order of magnitude smaller than 
the high jet shear case. A stagnation region, apparent 
in vertical cross-sections, exists near the intersection 
of the upper capillary surface and the keyhole when 
the surface tension force is directed away from the 
keyhole. In both cases, a secondary, horizontal 
counterflow exists in the middle and upper reaches of 
the pool induced by relatively rapid, predominantly 
downward velocities in the front portion of the pool. 
Flow in horizontal planes is Iargely determined by the 
plate’s motion when jet shear is of the same order of 
ma~itude as the characteristic the~ocapiilary stress. 
Consistent with the small characteristic dynamic Bond 
number, buoyancy is found to have a negligible effect 
on weld pool flow. 
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